A free boundary optimization problem for the ∞-Laplacian
نویسندگان
چکیده
منابع مشابه
A FREE-BOUNDARY PROBLEM FOR THE EVOLUTION p-LAPLACIAN EQUATION WITH A COMBUSTION BOUNDARY CONDITION
We study the existence, uniqueness and regularity of solutions of the equation ft = ∆pf = div (|Df | p−2 Df) under over-determined boundary conditions f = 0 and |Df | = 1. We show that if the initial data is concave and Lipschitz with a bounded and convex support, then the problem admits a unique solution which exists until it vanishes identically. Furthermore, the free-boundary of the support ...
متن کاملA Free Boundary Problem for the Laplacian with Constant Bernoulli-type Boundary Condition
We study a free boundary problem for the Laplace operator, where we impose a Bernoulli-type boundary condition. We show that there exists a solution to this problem. We use A. Beurling’s technique, by defining two classes of suband supersolutions and a Perron argument. We try to generalize here a previous work of A. Henrot and H. Shahgholian. We extend these results in different directions.
متن کاملTHE ONE PHASE FREE BOUNDARY PROBLEM FOR THE p-LAPLACIAN WITH NON-CONSTANT BERNOULLI BOUNDARY CONDITION
Our objective, here, is to generalize our earlier results on the existence of classical convex solution to a free boundary problem with a Bernoullitype boundary gradient condition and with the p-Laplacian as the governing operator. The main theorems of this paper assert that the exterior and the interior free boundary problem with a Bernoulli law, i.e. with a prescribed pressure a(x) on the “fr...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولGlobal Regularity for the Free Boundary in the Obstacle Problem for the Fractional Laplacian
We study the regularity of the free boundary in the obstacle problem for the fractional Laplacian under the assumption that the obstacle φ satisfies ∆φ ≤ 0 near the contact region. Our main result establishes that the free boundary consists of a set of regular points, which is known to be a (n− 1)-dimensional C manifold by the results in [7], and a set of singular points, which we prove to be c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2017
ISSN: 0022-0396
DOI: 10.1016/j.jde.2017.03.010